4 research outputs found

    Sequential Changepoint Approach for Online Community Detection

    Full text link
    We present new algorithms for detecting the emergence of a community in large networks from sequential observations. The networks are modeled using Erdos-Renyi random graphs with edges forming between nodes in the community with higher probability. Based on statistical changepoint detection methodology, we develop three algorithms: the Exhaustive Search (ES), the mixture, and the Hierarchical Mixture (H-Mix) methods. Performance of these methods is evaluated by the average run length (ARL), which captures the frequency of false alarms, and the detection delay. Numerical comparisons show that the ES method performs the best; however, it is exponentially complex. The mixture method is polynomially complex by exploiting the fact that the size of the community is typically small in a large network. However, it may react to a group of active edges that do not form a community. This issue is resolved by the H-Mix method, which is based on a dendrogram decomposition of the network. We present an asymptotic analytical expression for ARL of the mixture method when the threshold is large. Numerical simulation verifies that our approximation is accurate even in the non-asymptotic regime. Hence, it can be used to determine a desired threshold efficiently. Finally, numerical examples show that the mixture and the H-Mix methods can both detect a community quickly with a lower complexity than the ES method.Comment: Submitted to 2014 INFORMS Workshop on Data Mining and Analytics and an IEEE journa

    Sequential Changepoint Approach for Online Community Detection

    No full text

    A 3D Split Manufacturing Approach to Trustworthy System Development

    Get PDF
    Securing the supply chain of integrated circuits is of the utmost importance to computer security. In addition to counterfeit microelectronics, the theft or malicious modification of designs in the foundry can result in catastrophic damage to critical systems and large projects. In this Technical Report, we describe a 3D architecture that splits a design into two separate tiers: one tier that contains critical security functions is manufactured in a trusted foundry; another tier is manufactured in an unsecured foundry. We argue that a split manufacturing approach to hardware trust based on 3D integration is viable and provides several advantages over other approaches.Naval Postgraduate SchoolApproved for public release; distribution is unlimited

    A 3-D split manufacturing approach to trustworthy system development

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1109/TCAD.2012.2227257Securing the supply chain of integrated circuits is of utmost importance to computer security. In addition to counterfeit microelectronics, the theft or malicious modification of designs in the foundry can result in catastrophic damage to critical systems and large projects. In this letter, we describe a 3-D architecture that splits a design into two separate tiers: one tier that contains critical security functions is manufactured in a trusted foundry; another tier is manufactured in an unsecured foundry. We argue that a split manufacturing approach to hardware trust based on 3-D integration is viable and provides several advantages over other approaches
    corecore